Earth Science and Applications

Using our unique expertise to better understand how Earth works as a system for the benefit of society

INNOVATE . IMPLEMENT . IMPACT

Four Decades of Innovation

A SPECTRUM OF TOOLS

Sea Level Altimetry

Ocean Wind Scatterometry

Radar for Surface Deformation

Atmospheric Sounding

Multi-Angle Imagery

Imaging Spectroscopy

Cloud Radar

Gravity

Radio Occultation

Earth Remote Sensing

Successful Mission Implementation

PARTNERSHIPS AND EXPERTISE SPANNING FOUR DECADES OF EARTH OBSERVATIONS

Major contributions to NASA's Earth observing fleet of satellites

History of successful mission implementation and extended missions

International Partners

JPL Missions and Timelines

Mission Impacts

ENABLING FUNDAMENTAL ADVANCES IN EARTH SCIENCE

- Peer-reviewed science publications
 - > 400 publications/year involving JPL scientists
 - > 1000 publications/year based on JPL missions
- Training next generation Earth
 Science leaders
 - ~50 postdoctoral scientists
 - Over 700 summer interns annually
- Participation in the National Academy of Science and Engineering studies

Diversity & Inclusion at JPL

Mission Impacts

APPLYING OBSERVATIONS FOR REAL WORLD BENEFITS

- FEMA and U.S.
 Homeland Security
- National Drought Monitor
- California Seismic Safety
 Commission
- World Meteorological Organization (WMO)
- National Climate
 Assessment
- California Department of Water
- Contributor to the IPCC Assessments

Water Cycle

DEVELOP AND ENABLE PREDICTIONS FOR REGIONAL WATER SHORTAGES

INNOVATE • IMPLEMENT • IMPACT

Challenge

Develop useful predictions of regional water shortages for lead times from weeks to years

Approach

- Design and build first-of-a kind instruments/satellites
- Measure the components of the Earth's water cycle
- Understand and model the flow of water through the Earth system
- Develop integrated programmatic approach between science and engineering
- Partner with international, federal, state and local agencies to improve predictions of water

Satellite Missions

GRACE-FO, SMAP, ECOSTRESS, SWOT, AIRS, CloudSat, Jason-2/3, NISAR

Other Activities

Western Water Applications Office

Weather and Air Quality

ENABLE IMPROVEMENTS IN WEATHER FORECASTS AND AIR QUALITY ATTRIBUTION & FORECASTS

INNOVATE • IMPLEMENT • IMPACT

Other Activities

Cubesats (RainCube, Tempest-D), FIREX-AQ, atmospheric composition state and flux estimates, A-CCP Designated Observable Study, PBL Incubation Study, HAQAST, Subseasonal Atmospheric River Forecast Development.

Challenge

Increase the lead-time and accuracy for weather (Wx) for safeguarding life and property, and provide accurate air quality (AQ) attribution to improve health and environmental conditions.

Approach

- Develop new remote sensing capabilities to characterize atmospheric physical and chemical processes.
- Develop and improve data assimilation methods to better exploit Wx and AQ relevant satellite observations.
- Use these capabilities to enable more skillful Wx and AQ forecasts and improve AQ attribution to inform adaptation and mitigation efforts.

Satellite Missions

AIRS, GNSS-RO, MISR, Quikscat, MLS, RapidScat, SMAP, CloudSat, TES, MAIA

Sea Level

IMPROVE PREDICTIONS OF SEA LEVEL NEAR URBAN POPULATIONS

INNOVATE • IMPLEMENT • IMPACT

Challenge

Improve long-term projections of regional sea level rise to help mitigate the consequences to urban populations

Approach

- Measure global sea level variations, maintaining a record for continuity
- Develop measurement capabilities for regional sea level variations and rise
- Identify contributing processes to global and regional sea level variations
- Partner to improve predictions of sea regional level variations and global sea level rise

Satellite Missions

Jason-2/Jason-3, GRACE-FO, NISAR, SWOT

Other Activities

NASA Sea Level Portal, Oceans Melting Greenland, Delta-X

Natural Hazards

INCREASE DECISION SUPPORT INFORMATION FOR NATURAL HAZARD RESPONSE

INNOVATE • IMPLEMENT • IMPACT

Challenge

Develop forecast potential for natural hazard events and improve our capabilities for hazard response and preparedness

Approach

- Measure changes over the Earth surface to identify and characterize earthquakes, volcanoes, landslides, wild fire, etc.
- Improve our physical understanding of the Earth surface process to better model and predict natural hazards when/where possible
- Develop and provide decision support products for natural hazards preparation and response

Satellite Missions

GRACE-FO, ECOSTRESS, SWOT, NISAR, MISR, TES, EMIT

Other Activities

Advanced Rapid Image Analysis (ARIA)

Carbon and Ecosystems

PROVIDE ESTIMATES AND PROJECTIONS OF THE CARBON CYCLE AT DECISION-RELEVANT SCALES

INNOVATE • IMPLEMENT • IMPACT

Challenge

Provide actionable estimates and projections of the global carbon system, considering natural ecosystems and anthropogenic emissions

Approach

- Measure the components of the Earth's carbon cycle
- Understand and model the flow of carb on through the Earth system
- Partner to develop predictions of land, ocean and atmospheric carbon for decision-relevant scales (e.g. seasonal to decadal)

Satellite Missions

OCO-2, OCO-3, ECOSTRESS, TES, SMAP, NISAR

Other Activities

Carbon Management System, California Methane Survey, CORAL, Delta-X