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1.  Key Teammembers 
A large number of individuals contributed to the development of the algorithms, methods, and 
implementation of the L1b approach for EMIT.  The primary contributors are the following: 

• David R. Thompson (Jet Propulsion Laboratory) – EMIT Co-I, Instrument Scientist 
• Robert O. Green (Jet Propulsion Laboratory) – Mission PI, Radiometric modeling  
• Tom Painter (Jet Propulsion Laboratory) – Surface reflectance and BRDF 
• Olga Kalashnikova (Jet Propulsion Laboratory) – Atmospheric Aersols  
• Sarah Lundeen (Jet Propulsion Laboratory) – Science Data System Lead 
• Randy Pollock (Jet Propulsion Laboratory) – Instrument Systems Engineer 
• Philip Brodrick (Jet Propulsion Laboratory) – Algorithms Design and Implementation 

In addition, the algorithms described are based on prior work that includes sponsorship by multiple 
research agencies and includes contributions by many individuals.  These are associated with the 
papers and manuscripts listed throughout this text, and provided in references under the relevant 
topics. 
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2. Historical Context and Background on the EMIT Mission and its 
Instrumentation 

Mineral dust radiative forcing is the single largest uncertainty in aerosol direct radiative forcing 
(USGCRP and IPCC). Mineral dust is a principal contributor to direct radiative forcing over arid 
regions, impacting agriculture, precipitation, and desert encroachment around the globe. However, 
we have poor understanding of this effect due to uncertainties in the dust composition. Dust radiative 
forcing is highly dependent on its mineral-specific absorption properties, and the current range of 
iron oxide abundance in dust source models (0 – 7 wt%) translates into a 460% uncertainty in 
regional radiative forcing predicted by Earth System Models (ESMs). Meanwhile, soil samples from 
North Africa regions - important sources of mineral dust - contain up to 30 wt% iron oxide. The 
National Aeronautics and Space Administration (NASA) recently selected the Earth Mineral Dust 
Source Investigation (EMIT) to close this knowledge gap. EMIT will launch an instrument to the 
International Space Station (ISS) to directly measure and map the mineral composition of critical 
dust-forming regions worldwide. 
The EMIT Mission will use imaging spectroscopy across the visible shortwave (VSWIR) range to 
reveal distinctive mineral signatures, enabling rigorous mineral detection, quantification, and 
mapping. The overall investigation aims to achieve two objectives. 

1. Constrain the sign and magnitude of dust-related RF at regional and global scales. EMIT 
achieves this objective by acquiring, validating and delivering updates of surface mineralogy 
used to initialize ESMs. 

2. Predict the increase or decrease of available dust sources under future climate scenarios. 
EMIT achieves this objective by initializing ESM forecast models with the mineralogy of 
soils exposed within at-risk lands bordering arid dust source regions. 

The EMIT instrument is a Dyson imaging spectrometer that will resolve the distinct absorption 
features of iron oxides, clays, sulfates, carbonates, and other dust-forming minerals with contiguous 
spectroscopic measurements in the visible to short wavelength infrared region of the spectrum. 
EMIT will map mineralogy with a spatial sampling to detect minerals at the one hectare scale and 
coarser, ensuring accurate characterization the mineralogy at the grid scale required by  ESMs. 
EMIT’s fine spatial sampling will resolves the soil exposed within hectare-scale agricultural plots 
and open lands of bordering arid regions, critical to understanding feedbacks caused by mineral dust 
arising from future changes in land use, land cover, precipitation, and regional climate forcing.  

Data Product Description Initial Availability  Median Latency 
Post-delivery 

NASA 
DAAC  

Level 0  Raw collected telemetry  4 months after IOC   2 months  LP DAAC 

Level 1a  Reconstructed, depacketized, 
uncompressed data, time referenced, 
annotated with ancillary information 
reassembled into scenes.  

4 months after IOC  2 months  LP DAAC  

Level 1b  Level 1a data processed to sensor units 
including geolocation and observation 
geometry information  

4 months after IOC  2 months  LP DAAC  

Level 2a  

  

Surface reflectance derived by 
screening clouds and correction for 
atmospheric effects.  

8 months after IOC   2 months  LP DAAC  

Level 2b  Mineralogy derived from fitting 
reflectance spectra, screening for non-
mineralogical components.   

8 months after IOC  2 months  LP DAAC  
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Level 3  Gridded map of mineral composition 
aggregated from level 2b with 
uncertainties and quality flags  

11 months after IOC  2 months  LP DAAC  

Level 4  Earth System Model runs to address 
science objectives  

16 months after IOC  2 months  LP DAAC 

Table 1: EMIT Data Product Hierarchy 
The EMIT Project is part of the Earth Venture-Instrument (EV-I) Program directed by the Program 
Director of the NASA Earth Science Division (ESD). EMIT is comprised of a Visible/Shortwave 
Infrared Dyson imaging spectrometer adapted for installation on the International Space Station 
(ISS). It will be installed on Flight Releasable Attachment Mechanism (FRAM) of an ExPRESS 
Logistics Carrier (ELC) on the ISS, in a site formally designated ELC 1 FRAM 8.  NASA has 
assigned management of the Project to the Jet Propulsion Laboratory of the California Institute of 
Technology. The EMIT Payload is scheduled to be installed on the ELC 1 FRAM 8 in 2021. Table 
1 above describes the different data products to which the EMIT Mission will provide to data 
archives.  This document describes the “Level 2A” stage. 

 
Figure 1: Representative spectra from the EMIT analysis, data product levels 0, 1b, and 2a. 

 
Figure 2. High-level workflow of the EMIT science data system. 
 
This document describes the theoretical basis for the algorithm producing EMIT’s “Level 2a” 
product.  Figure 1 shows examples of the spectrally-defined quantities leading up to this analysis, 
drawn from an airborne precursor analogue instrument.  Figure 2 is a diagram of the Science Data 
System workflow, including all analysis stages and dependencies. The system begins with a “Level 
0” raw data product that records the raw sensor output in digital numbers.  The EMIT Science Data 
System (SDS) applies spectral and radiometric calibration to produce “Level 1” products, e.g. 
calibrated radiance measurements at the sensor.  These are then geolocalized to produce an image 
that aligns with specific geographic coodinates for matching against digital elevation models. The 
“Level 2A” inverts these radiance measurements.  It uses physically-motivated surface/atmosphere 
models to estimate atmospheric properties and surface reflectance.  The “Level 2A” products include 
atmospheric parameters and other ancillary files, but the primary output is the surface reflectance 

Level 0: Raw instrument data Level 1b: Calibrated spectral radiance at sensor Level 2a: Estimated surface reflectance (HRDF)



EMIT Level 2a ATBD 

EMIT L1A Algorithm Theoretical Basis 4 

estimate used for later analysis by mineral detection and mapping algorithms.  The mineral detection 
stage (not shown) performs feature fitting on the reflectance data to estimate mineral occurrence, 
creating a “Level 2B” map at native instrument resolution.  This is aggregated into a coarse “Level 
3” product for incorporation into Earth System modeling to evaluate Radiative Forcing (RF) impacts.  
All stages are instantiated in the EMIT science product generation software operating at the Jet 
Propulsion Laboratory, California Institute of Technology.    

3  Algorithm rationale and prior validation 
Atmospheric correction (Thompson et al., 2019) has a multi-decadal history of use for imaging 
spectrometers viewing the Earth surface.  This on airborne precursor instruments such as NASA’s 
“Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C, Green et al., 1998) and has 
been extended to its next generation counterpart (AVIRIS-NG, Thompson et al., 2017). Such 
analyses have been conducted in dozens of campaigns over decades of successful operations.  Many 
empirical methods based on scene averaging (Kruse 1988), flat fielding (Roberts et al., 1986), 
QUAC (Bernstein et al., 2005), and cloud shadow methods (Reinersman et al., 1998) are useful but 
do not scale to global observations with diverse scene content and sparse field data. ).  They rely 
either on manual intervention, or on specific characteristics of the scene such as a spatially 
homogeneous atmosphere or known scene content, precluding their use with EMIT.  Instead, we 
favor a physically-motivated correction based on radiative transfer models. These have the dual 
advantages of superior generalizability across scenes without the need for manual intervention in the 
analysis, and physical interpretability.   
Recent reviews surveying different atmospheric alternatives appear in Thompson et al. (2019), 
Ientilucci and Adler-Golden (2019), and for aquatic spectra, Frouin et al. (2019).   Broadly speaking, 
physically-based methods themselves fall into two general categories (Frouin et al., 2019). 
Sequential methods first estimate atmospheric properties based on analysis of the radiance spectrum, 
and then invert the radiance directly via closed-form algebra to estimate the surface reflectance.  In 
other words, atmosphere and surface are estimated in two independent steps.  Existing physics-based 
atmospheric correction codes designed for imaging spectrometers all use this general method.  They 
include ACORN (Kruse et al., 2004), ATCOR (Richter and Shlaepferm 2002), ATREM (Gao, 1993) 
and the AVIRIS-NG standard approach derived from ATREM (Thompson et al., 2015). 

Alternatively, simultaneous methods estimate surface and atmosphere simultaneously, as in 
Bayesian Maximum A Posteriori estimation (Thompson et al., 2018, 2019b).  Simultaneous methods 
carry several advantages that are crucial for the EMIT mission.  First, they enable rigorous 
uncertainty accounting.  Uncertainty accounting on the input side means respecting instrument noise 
in the radiance data which can vary by surface type, observing conditions, and wavelength, as well 
as incorporating any prior background knowledge available in the form of statistical priors.  The 
ability to seamlessly account for these factors makes the Bayesian inversion a flexible and powerful 
approach to achieve EMIT’s extreme sensitivity requirements.  On the output side, uncertainty 
accounting lets the algorithm propagate posterior uncertainty estimates downstream, where they can 
improve the performance of mineral fitting algorithms (Thompson et al., 2020b).  A second 
independent benefit of the simultaneous model inversion approach is the demonstrated ability to use 
the entire spectral range of acquisition in the atmospheric correction, enabling estimation of subtler 
broad atmospheric perturbations such as aerosols (an EMIT product, in the form of an AOD mask). 
The main disadvantage is that the methods use an iterative algorithm, leading to higher 
computational demands.   

The EMIT mission uses a Bayesian model inversion strategy, a formalism known colloquially in the 
community as Optimal Estimation (OE, e.g. Rodgers 2000), with careful application of geospatial 
interpolation to glean the benefits of both while minimizing cost.  The specific OE-based approach 
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used in EMIT has been validated by decades of operational use by NASA’s atmospheric remote 
sounding spectrometers on many missions and millions of acquisitions (Rodgers 2000).  The 
approach recently has been extended to VSWIR imaging spectrometers and validated though peer-
reviewed field studies with over 20 in situ validation trials of surface reflectance over synthetic, 
water, vegetated, and bare terrain (Thompson et al., 2018, Thompson et al., 2019b, Thompson et al., 
2019c, Thompson et al., 2020).  Outside the imaging spectroscopy community, the OE approach has 
been In situ measurement protocols have also been vetted by decades of continuing operational use 
(Thompson et al., 2015).  The code used is distributed as open source through the public repository 
at https://github.com/isofit/isofit/.  This transparency helps for finding errors, and also for end users 
who desire details on the implementation specifics (e.g. data layout in memory, command flow, 
etc.).  The code will undergo continuing development by a growing community of users throughout 
the EMIT mission. 

4.  Algorithm description 

  4.1 Input data 
The EMIT input and output data products delivered to the DAAC use their formatting conventions, 
the system operates internally on data products stored as binary data cubes with detatched human-
readable ASCII header files.  The precise formatting convention adheres to the ENVI standard, 
accessible (Jan 2020) at https://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html.  The 
header files all consist of data fields in equals-sign-separated pairs, and describe the layout of the 
file.  The specific input files needed for the L2b stage are: 

I. An observation metadata file, typically with the string “obs” in the filename, containing 
information about the observation geometry for every pixel.  The observation file uses the 
original instrument frame (non-orthorectified) coordinate system with size [rows x cols x 
12] in Band-Interleaved by Line (BIL) format and single-precision IEEE little-endian 
floating point representation.  It should overlay the radiance data exactly so that all of the 
pixels are associated between the two files.  The channels contain: 

1. Path length – the direct geometric distance from the sensor to the location on the 
surface of the Earth, as defined by a Digital elevation model  

2. To-sensor azimuth, in decimal degrees, at the surface  
3. To-sensor zenith, in decimal degrees, at the surface 
4. To-sun azimuth, in decimal degrees, at the surface 
5.  To-sun zenith, in decimal degrees, at the surface,  
6. Phase angle in degrees, representing the angular difference between incident and 

observation rays  
7. Terrain slope in degrees as determined from DEMs, 
8. Terrain aspect in degrees, as determined from DEMs, 
9. The cosine of the solar incidence angle relative to the surface normal 
10. UTC time 

II. A location file, typically with the string “loc” in the filename, containing information about 
the geographic projection of each spectrum.  The location file is left in the original non-
orthorectified instrument coordinate system, with size [rows x cols x 3] in Band-Interleaved 
by Line (BIL) format and single-precision IEEE little-endian floating point representation.  
It should overlay the radiance data exactly.  The channels contain: 

1. Latitude of surface, in decimal degrees, with a WGS-84 datum 
2. Longitude of surface, in decimal degrees, in degrees East of zero, with a WGS-84 

datum 
3. The average elevation of the surface, as determined from a Digital Elevation Model 

III. A geographic lookup table file, typically with the string “glt” in the filename, containing 
information about the index into the unorthorectified data of each spectrum.  It is projected 
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to a geographic coordinate system, with size [rows x cols x 2] in Band-Interleaved by Line 
(BIL) format and 32-bit unsigned integer representation.  Its columns contain the row and 
column indices, respectively,  of each spectrum in the original unorthorectified data.   

IV. Radiance data at sensor, typically with the string “rdn” in the filename, in units of uW 
/cm2/ nm / sr  The data is in the instrument frame (non-orthorectified representation with 
size [rows x cols x channels] in Band-Interleaved by Line (BIL) format and single-
precision IEEE little-endian floating point representation.  The precise number of channels 
is not yet determined at the time of this writing but should be a value close to 300.   

 
“Bad data” at the periphery outside the field of view, or masked as a result of cloud masking or 
instrument error, is typically assigned the reserved (floating point) value -9999.  In addition to 
these files above, which change on a per acquisition basis, the L2A stage uses a wide range of 
ancillary files in its configuration.  These include configuration files themselves, climatology 
and physical reference data, surface, atmospheric, and instrument model data, and more.  These 
ancillary files are outside the scope of this ATBD, where we will concern ourselves with the 
data associated with a particular product and acquisition.  We will also disregard internal 
configurations used by the science data system for managing and running these processes.  
Table 2 Below enumerates all products. 
 

Input file Format Interpretation 
Observation 
Metadata 

rows x columns x 12, BIL 
interleave 32-bit floating point 
with detached ASCII header 

Varies (see text) 

Location 
File 

rows x columns x 3, BIL 
interleave 32-bit floating point 
with detached ASCII header 

Latitude in decimal degrees, 
Longitude in decimal degrees, 
elevation of surface in meters 

Geographic 
Lookup 
Table 

rows x columns x 2, BIL 
interleave 32-bit unsigned 
integer, detached ASCII header 

Row and column index into 
unorthorectified instrument data 

Radiance 
data 

rows x columns x channels, BIL 
interleave 32-bit floating point 
with detached ASCII header 

Radiance at sensor in uW /cm2/ 
nm / sr . 

Table 2: Input files 

4.2 Theoretical description 
Broadly speaking, the EMIT atmospheric correction stage has several goals.  All operations involve 
the atmosphere to some extent, and operate on the calibrated radiance files, so we combine them for 
organizational convenience into a single product level.  The Level 2a output includes: 

• Estimates of local aerosol and atmospheric water vapor content of the atmosphere along 
with the Lambertian-equivalent surface reflectance, all with uncertainty predictions. 

• Flags for high-haze conditions (i.e. aerosol optical depths exceeding our working range). 
• Mask for cloudy regions of the scene which lets downstream analyses to exclude them. 

Figure 3 below illustrates the sequence of operations along with the major input and output 
products at each stage.  All procedures execute sequentially moving from top to bottom.  Boxes are 
colored according to their designation as level 1B, level 2A, or intermediate products.  Since cloud 
masking is a separate operation with minimal dependencies or algorithmic relationship to the 
surface atmosphere estimation, we treat it separately in a later section. 
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Figure 3: Sequence of 
operations in the EMIT 
level 2A stage.  All 
reflectance and atmosphere 
estimates  also include 
uncertainty predictions.   

 
 

4.2.1 Radiative Transfer and Atmospheric Modeling 
Physics-based retrieval of atmospheric parameters and surface reflectance typically relies on 

mathematical models expressing the spectral radiance reflected by the Earth’s surface and 
atmosphere at the top-of-atmosphere (TOA) as a sum of radiative terms from different processes, 
such as the photons scattered by the atmosphere into the sensor line of sight or those multiply 
scattered between the atmosphere and the surface (Figure 2).  While in general the atmospheric 
effects are dependent on non-Lambertian properties of surface-atmosphere coupling, the EMIT 
analyses permit several simplifications.  The mineral absorption fits used in later stages are relatively 
invariant to spectrally-featureless magnitude differences resulting from non-Lambertian behavior.  
Additionally, surfaces in arid mineral dust forming regions are mostly Lambertian at that 
instrument’s ground sampling, unlike – for example – dense tree canopies or open ocean.  Finally, 
imaging geometry is near to nadir.  These circumstances mean that we can report Lambertian-
equivalent properties in the general case without significant loss of accuracy to downstream 
algorithms. This permits the following decomposition (Thompson et al., 2018):  

(1) 

where boldface denotes vector-valued quantities (in this case, spectra) and circles represent element-
wise multiplication. The symbol 𝜌!"# refers to the top-of-atmosphere reflectance; it is based on the 
radiance measurement LM, the extra-terrestrial solar flux F and the solar zenith angle 𝜃. The symbol 
T is the direct and diffuse transmission of the mean optical path from sun to ground to sensor, S is 
the spectral albedo representing the atmospheric reflectance as seen from the surface, 𝜌#	is the path 
reflectance of the atmosphere, and 𝜌$ is the Lambertian-equivalent surface reflectance.   
These terms are related to several physical properties in the atmosphere.  Of special interest are the 
scattering and absorption by molecular gases and aerosols (Figure 4), which all contribute to each 
of the terms in equation 1.  An example of the transmittance contribution from gas absorption appears 
in Figure 5 below, adapted from (Thompson et al., 2019).  We calculate the EMIT atmospheric 
absorption and scattering property estimates using the MODTRAN 6.0 Radiative Transfer Model 
(Berk et al., 2016; 2016b).  Given a specific atmospheric state, MODTRAN can estimate the optical 
coefficients S, T, and of Equation 1 from physical first principles.  We perform this estimation at 
high spectral resolution, transform the result to the EMIT instrument spectral response. 

 

Segmentation 
(SLIC)

Calibrated, georectified radiance cube 
with uncertainties

Reference 
radiances

Scene Geometry and Digital 
Elevation Model

Cloud 
identification

Reflectance estimates 
for reference spectra

Local empirical line 
extrapolation

Cloud mask

Calibrated, georectified reflectance 
cube with uncertainties

Calculate MODTRAN 
6.0 LUT

Atmosphere & surface estimation (OE)

Aerosol optical 
depths & H2O

AOD mask
Level 1B data

Interim products

Level 2A data

Procedures



EMIT Level 2a ATBD 

EMIT L1A Algorithm Theoretical Basis 8 

 

Figure 4: The atmospheric correction process involves jointly 
estimating the parameters of a model that includes the surface 
reflectance, the atmospheric constituents, and the instrument.  A 
wide range of different physical effects, including scattering, 
absorption, and the target surface reflectance signal, all play a role in 
determining the photon distribution at the sensor. 

 
Figure 5: Atmospheric gas 
absorption by wavelength across 
the EMIT spectral interval. 

 
The MODTRAN 6.0 atmospheric gas absorption model uses a “correlated k” approach with 
absorption coefficients from the HITRAN 2012 line list (Rothman et al., 2012).  Following on prior 
work, we augment the basic configuration with three basic aerosol signatures (Thompson et al., 
2019b) representing small, medium, and large particles such as soot, sulfates, and dust. The soot and 
sulfate-derived signatures are spherical, while dust particles are nonspherical.  All three are 
described by spectral absorption, extinction, and asymmetry profiles in prior work (See Figure 6, 
adapted from Thompson et al., 2019c).  The complete aerosol is a contribution of all three aerosol 
optical depths, each specified independently (typically at the reference wavelength 550 nm). These 
three signatures are used structured error terms in the inversion process to improve atmospheric 
correction.  This also permits an aggregate AOD estimate for scene flagging.  In Figure 6, type A is 
a strongly absorbing aerosol signature derived from soot.  Type B is a   separate signature based on 
continental dust absorption and scattering coefficients. Type C is a small scattering particle based 
on a sulfate signature.  We advise against interpreting the individual retrieved as physical  properties 
of the particles. 

 

Figure 6: Aerosol profiles (image and approach 
adapted from Thompson et al., 2019c).  We use 
three signatures as structured error terms in the 
inversion process to improve atmospheric 
correction and to permit an aggregate AOD 
estimate for scene flagging.  Type A is a strongly 
absorbing aerosol signature derived from soot.  
Type B is a   separate signature based on 
continental dust absorption and scattering 
coefficients. Type C is a small scattering particle 
based on a sulfate signature.  While the inversion 
process estimates the AOD of each signature 
independently, we advise against interpreting the 
individual retrieved as physical  properties of the 
particles due to uncertainties in vertical 
distribution and ambiguity in optical properties. 
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4.2.2 Model Inversion 
Our retrieval algorithm is based on Bayesian Maximum A Posteriori (MAP) inversion of equation 
1, using a strategy known colloquially as Optimal Estimation (OE, Rodgers, 2000).  This approach 
has been demonstrated previously in multiple imaging spectrometer field studies (Thompson et al., 
2018, 2019b, 2019c).  Its advantages include rigorous uncertainty propagation and the ability to 
estimate atmospheric aerosol constituents in high AOD conditions.  The main disadvantage is a high 
computational cost due to the iterative inversion algorithm, which must run independently on every 
spectrum.  Here, we address this by running the full algorithm on a representative subset of several 
thousand spectra per scene.  These results enable a highly accurate, spatially-local empirical line 
estimate for the remainder, allowing millions of spectra to be corrected and capturing the benefits of 
the iterative approach at a feasible computational cost.  

The Bayesian Model inversion acts as a local ascent of the posterior probability density for a state 
vector x consisting of surface and atmosphere parameters (Figure 7).  As in Thompson et al. (2018) 
we initialize the result to a heuristic estimate  using a band ratio across water vapor absorption 
features, and an algebraic inversion of equation (1). Then, an iterative gradient-based Levenberg 
Marquardt follows the (negative) derivative of the following cost function until converging to a local 
minimum: 

(2) 
The first term is related to the logarithm of the multivariate data likelihood at the current state vector; 
the second term penalizes departures from the prior in similar fashion.  All probability distributions 
are multivariate Gaussians.  Here Ψ% is the observation noise that incorporates measurement noise 
in the radiance measurement 𝒙&% as well as any unknowns in the surface atmosphere system that are 
treated here as random variables.  The forward model 𝑭(𝒙&) maps the reflectance and atmosphere 
state vector,	𝒙&, to the measurement space using Lookup table interpolation of optical coefficients 
in Equation 1.  The multivariate Gaussian prior over surface and atmosphere is defined by 
Covariance matrix 𝚺&and mean 𝜇&. These priors are intentionally set to be extremely broad in order 
to avoid estimation bias in atmospheric parameters.  Similarly, we use a very loose and heavily 
regularized surface prior.  It is based on a collection of multivariate Gaussians, as suggested in 
Thompson et al., (2018, 2019a, 2019b), using the Euclidean-nearest component of the initial state 
calculated in reflectance space as the prior. All spectra are L2-normalized for the purposes of 
calculating these distances and prior distributions so that the distribution affects the shape but not 
the magnitude of spectra. The only difference with the formulation in these previous studies is that 
all wavelengths outside critical atmospheric windows are left entirely decorrelated.  This allows 
instrument noise to enter the reflectance estimate unmodified, and permits highly accurate retrieval 
of absorption features in mineral bands.  
Upon convergence, the linearization of the forward model produces an estimate of the posterior 
probability density.  For Kr representing Jacobian matrices of partial derivatives, i.e. the 
instantaneous change in the state vector from a change in the calibrated radiance, the posterior 
covariance takes the form: 
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This yields a reflectance, atmosphere, and uncertainty estimate for each reference spectrum.   The 
final step is an Empirical Line operation (Thompson et al., 2016) that uses the k nearest solutions 
to extrapolate an exact solution for the high-resolution data. 

 

 

Figure 7: The Bayesian model 
inversion begins at an initial guess, 
and climbs the local gradient of the 
posterior probability density 
(equivalently, minimizing the cost 
function in equation 2).  At the time 
of convergence, this produces a 
linearized estimate of posterior 
uncertainty, portrayed here as an 
ellipsoid. 

.   

Figure 8: (Left) Cuprite, NV 
scene. (Right) Interpolated 
OE estimation of a single 
reflectance spectrum, via the 
local empirical line solution.  
Sharp, spectrally-diagnostic  
Kaolinite features are visible 
in the 2-2.5 micron range.   

   
 

4.2.3 Superpixel Segmentation 
Since complete model inversion of every spectrum is computationally intractable, we use a 
segmentation to identify representative spectra in the flightline where we apply our model 
inversions.  After performing the atmosphere/surface estimation on the representative subset of, we 
assign the atmospheric estimates to each location associated with that segment.  We then use the 
representative spectra to calculate local “Empirical line” solutions (Moran et al., 2001, Thompson 
et al., 2016).  The empirical line performs the exact atmospheric correction for all independent (non-
aggregated) spectra at maximum spatial resolution.   
The initial segmentation uses a superpixel aggregation approach based on the SLIC algorithm 
(Achanta et al., 2012).  We reduce all spectra in the file to a basis of five orthogonal dimensions with 
principal components analysis, and segment the result into regions that are (a) contiguous and (b) 
contain several hundred pixels of similar radiance properties.  Figure 9 illustrates the superpixel 
segmentation of a scene from NASA’s Next Generation Airborne Visible Infrared Imaging 
Spectrometer (AVIRIS-NG).  It results in a reduced subset of locally-representative radiances and 
associated regions.  This dataset is typically 2-3 orders of magnitude faster to analyze.  Additionally, 
it significantly reduces noise variance to assist with accurate atmosphere estimation.  Similarly, we 
take the mean radiance and location of each segment as the input to the following atmospheric 
correction. 
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Figure	 9:	 SLIC	
segmentation	combines	
contiguous	 pixels	 of	
similar	 radiance	
properties	 into	a	 single	
local	reference	area	and	
associated	 radiance	
spectrum.		
 

4.2.4 Empirical Line extrapolation 
The empirical line (Moran et al., 2001) first identifies the nearest 15 representative spectra for the 
current segment.  Optionally, one can weight vertical distance on the DEM differently from 
horizontal distance.  It then calculates an independent linear least-squares regression solution for 
every wavelength, finding the offset and coefficient that maps radiance onto reflectance for that 
specific atmospheric condition.  Coefficients are calculated once per segment and cached for 
application to the fine-scale spectra within. Because the empirical line estimate is spatially localized 
the linear solution for each wavelength respects local variability of the atmosphere while providing 
both AOD and H2O estimates over the entire scene.  It accurately identifies signatures that appear 
in small single- or sub-pixel locations that are not apparent in the spatially-aggregated estimate.  
Figure 10 shows an example of the empirical line prediction for the Cuprite, NV scene at 550 nm, 
showing that the representative superpixels’ radiances and reflectances do indeed exhibit a locally-
linear relationship.  This permits a highly accurate estimate for the fine-scale spectrum shown in red.  

Figure 10: Empirical line estimate for an 
example segment of the Cuprite flightline 
portrayed in Figure 6.  Black points show 
the mean spectra of the 15 nearest 
reference spectra to a fine-scale radiance 
we aim to invert.  Since the relationship is 
locally linear, it is easy to quickly 
determine an accurate solution via linear 
regression. 

 
 

4.2.5 Cloud Masking 
The radiance data analysis begins with a cloud masking operation following on the prior work of 
Thompson et al (2014).  This procedure places prior distributions on the distributions of top of 
atmosphere reflectances at three representative wavelengths: 420 nm, 1250 nm, and 1650 nm.  The 
distributions of intensities over clouds and Earth’s surface are well-separated, permitting a single 
trivariate threshold to flag clouds.   

Nearest 
neighbor 
solutions

Reflectance 
prediction for the 
query  radiance
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Figure 11: Thresholds in three channels 
combine to define a hypercubic “excluded 
region.”  Any pixel exceeding the threshold in 
all three channels is considered cloudy.  

Any pixel exceeding the threshold in all three channels is flagged as cloudy, and the result written 
to a binary cloud mask for use in later analysis.  The thresholds define an exclusion region ℛ (Figure 
11) that defines the boundary between cloud and clear locations.  Consequently, for a top of 
atmosphere reflectance spectrum y the decision rule f(y) classifying the pixel as either cloudy, 
written c1 , or clear, written c2,  is simply: 

   
The Bayesian formalism of Thompson et al (2014) allows the designer to set a threshold on all three 
channels that optimally balances the risk of data loss from false positives against the risk of passing 
cloud pixels into subsequent analysis.  For the EMIT mission, most surfaces of interest are far darker 
than clouds, so we set a conservative threshold during cloud masking.  The expected loss is a function 
of the prior class probabilities (taken here as uninformed or uniform), the probability density of a 
given observation for cloudy classes, for a given state variable x representing the local surface “type” 
and season.  For simplicity we ignore this last variable, leading to a uniform decision rule applying 
equally to all different surfaces.  The expected loss for a relative weighting of false positive and false 
negative errors, respectively written 𝛼'( and 𝛼'), is: 

 
A false positive weighting of 10-1000 is a conservative threshold that is very unlikely to exclude 
bright surface spectra.  Figure 12 below shows that bare terrain is much darker than typical cloud 
spectra, particularly in the ultraviolet and blue channels.  Water is uniformly dark.  Snow or ice can 
be bright in the visible channels, but exhibits high absorption in the near and shortwave infrared 
which permits any thresholding method of two or more channels to separate them effectively.  The 
panel at right shows the bivariate exclusion regions for two representative false positive weight 
values, illustrating that the two are sufficient to discriminate snow and terrain from cloud pixels in 
a diverse historical dataset. Figure 13 below, taken from Thompson et al. (2014), shows an example 
application of this approach to a scene from NASA’s “Classic” Airborne Visible Infrared Imaging 
Spectrometer (AVIRIS-C).  The left panel shows the original scene in red, green, and blue optical 
wavelengths.  The scene contains both bright snow and dispersed clouds.  The middle panel shows 
the result of the cloud masking operation using the channelwise threshold.  We note that an onboard 
cloud masking operation performs a similar operation, excising the most obvious clouds to reduce 
data volumes.  This operation uses an even more conservative threshold, and excises entire vertical 
segments of a scene with too many cloud pixels.   

We dilate the detected cloud masks in order to avoid cast shadows and disruption of the incident 
light field adjacent to clouds.  Figure 14 shows a graphical illustration of the method.  The maximum 
cloud height and solar zenith angle define a geographic exclusion area around each cloud where 
shadows may be found.  We apply an efficient image-space distance transformation to the cloud 
mask, producing an array specifying every image locations’ distance to the nearest cloud pixel.  We 
flag any pixel whose distance lies within the exclusion interval.  The maximum cloud height is 3000 
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m, which is low enough to preserve data but high enough to capture the majority of optically-thick 
cumulus clouds.  Higher altitude stratus clouds are less important for this purpose because they are 
more likely to be large, spatially-continuous cloud masses. Such clouds subtend a large enough 
fraction of the image to be filtered by the onboard cloud masking system.  Additionally, their 
altitudes are high enough that they would require an infeasibly large exclusion region.  This cloud 
height may be reassessed during the mission. 

  

Figure 12: Cloud screening illustration, from Thompson et al. (2014).  Left: Brightness distributions 
for cloud, bare terrain, and snow have very different spectral shapes. Right: Two of three threshold 
channels showing “exclusion regions” defined by different tolerances for false positives.  
Figure 13: L2A cloud screening compared to onboard 
(real-time) excision, adapted from Thompson et al 
(2013).  The right panel shows an acquisition by 
NASA’s “Classic” Airborne Visible Infrared Imaging 
Spectrometer (AVIRIS-C).  We show visible channels 
of scene content including bare dark terrain, bright 
snow-covered terrain, and cloud.  The middle panel 
shows the L2A pixel-wise cloud masking.  The onboard 
excision performs a pre-screening using an even more 
conservative threshold to reduce transmitted data 
volume; this excises vertical segments of each scene that 
contain more than an acceptable number of cloud pixels.  

 

Figure 14: The cloud mask dilation excludes pixels that are 
likely to contain contamination by cloud diffuse illumination or 
cloud cast shadows.   We excise pixels in a conservative 
exclusion region defined by the solar zenith and a maximum 
cloud height parameter. 

4.3 Practical Considerations 
Due to the computationally-demanding nature of the EMIT L2A stage, operators must attend to the 
balance between accuracy and speed in their settings for approximations like the lookup table grid 

Dilation

Avoids shadow and 
diffuse light effects

Max. 
cloud 
height
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spacing (which affects the number of MODTRAN runs) and the number of superpixels (which 
affects the accuracy of empirical line extrapolation).  Currently, a three- or four-point Aerosol 
AOD model is used, with linear interpolation between.  The H2O model uses a 0.2 g/cm2 spacing.  
As computational resources permit, these numbers will be relaxed.  As of the writing of this 
document, a typical airborne flightline requires 1-2 days to complete for a single CPU; given a 
cluster with many CPUs, keeping up with the EMIT datastream is feasible.  However, we 
anticipate further accuracy improvements as additional CPUs come online. 

5. Output Data 
The EMIT output data products delivered to the DAAC use their formatting conventions, the 
system operates internally on data products stored as binary data cubes with detatched human-
readable ASCII header files.  The precise formatting convention adheres to the ENVI standard, 
accessible (Jan 2020) at https://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html.  The 
header files all consist of data fields in equals-sign-separated pairs, and describe the layout of the 
file.  The specific output files from the L2b stage are: 

I. A surface reflectance file, typically with the string “rfl” in the filename, containing the 
estimated spectral surface reflectance for every pixel.  It is provided in the non-
orthorectified instrument coordinate system with size [rows x cols x channels] in Band-
Interleaved by Line (BIL) format and single-precision IEEE little-endian floating point 
representation.  It should overlay the orthorectified radiance data exactly so that all of the 
pixels are associated between the two files.   

II. A reflectance uncertainty file, typically with the string “uncert” in the filename, 
containing predicted uncertainty in the reflectance measurement for each channel, in units 
of standard deviations (presuming a Gaussian distribution).  Covariance is ignored.  It is 
provide in the non-orthorectified instrument coordinate system with size [rows x cols x 
channels] in Band-Interleaved by Line (BIL) format and single-precision IEEE little-endian 
floating point representation.  It should overlay the reflectance and radiance data exactly. 

III. A mask file, typically with the string “mask” in the filename, containing channels with the 
following information: 

1. Probability this pixel is cloud 
2. Probability this pixel is standing water  
3. Dilated cloud mask 
4. Aerosol Optical Depth (550 nm) 
5. Estimated Columnar Water Vapor (g cm-2) 
6. Aggregate bad data flag 

The fourth channel applies EMIT’s masking rules to the otherchannels in order to 
determine whether that pixel will be used in subsequent aggregation to the Level 3 product.  
The file is projected into a geographic coordinate system with size [rows x cols x channels] 
in Band-Interleaved by Line (BIL) format and single-precision IEEE little-endian floating 
point representation.  It should overlay the reflectance and radiance data exactly. 
 

Any file can contain “bad data” as a result of cloud masking or instrument error. These pixels are 
typically assigned the reserved (floating point) value -9999.  Table 2 Below enumerates all 
products. 
 

Output file Format Interpretation 
Reflectance rows x columns x channels, BIL interleave 32-

bit floating point with detached ASCII header 
Lambertian-equivalent 
surface reflectance 

Uncertainty rows x columns x channels, BIL interleave 32-
bit floating point with detached ASCII header 

Reflectance uncertainty 
(one standard deviation) 



EMIT Level 2a ATBD 

EMIT L1A Algorithm Theoretical Basis 15 

Mask rows x columns x 5, BIL interleave 32-bit 
unsigned integer, detached ASCII header 

Varies by channel (see 
above). 

Table 3: Output files 

6. Calibration, Validation, and Field Measurement 
Level 2 reflectances will be validated using standard field protocols used in prior field studies 
(Thompson et al., 2018, 2019a, 2019b, 2020a).  We will measure surface reflectance of a large 
uniform bright surface, such as a playa, using field spectroradiometers, with coincident in-situ 
AEROSOL optical depth estimation by sun extinction measurements from the ground, during the 
EMIT overflight.  Instrument measurement and spatial variability, combined with uncertainties in 
the atmospheric model and retrieval, can demonstrate closed uncertainty budgets as in Thompson 
et al. (2020a) or simply good agreement between the estimate and reality, as in Thompson et al. 
(2018).  Figure 15 below shows examples of a calibration/validation experiment at Stonewall 
Playa, Ivanpah, with the spectroradiometer field unit (left panel), the playa itself (center panel), 
and the comparison of reflectances (right panel). Our calibration and validation plan includes 
several locations that we will use opportunistically in response to ISS overpasses. 
 

    
 
Figure 15: Left: Field spectroradiometer for validation. Center: Stonewall Playa validation site.  
Nimrod Carmon demonstrating. Right: Remote and in-situ retrievals with 15𝜎 uncertainty 
predictions (Thompson et al., 2020). 
 
Prior verification and validation for the Level 2 algorithm takes several approaches.  The codebase 
is available as open source (ISOFIT, 2019) and has a growing community of users in the research 
community.  The method draws from decades of atmospheric sounding research (Rogers 2000) 
and its specific application to imaging spectroscopy has been vetted for multiple instruments and 
campaigns across continents, compared with in situ data and published in peer reviewed literature.  
Publications referencing the results of this code on airborne precursor data include work by 
Thompson et al. (2018, 2019b, 2019c), Frouin et al. (2019), and Bue et al. (2019).  Field trials 
demonstrate good alignment with in-situ reflectance data, and residuals consistent with posterior 
error predictions. Figure 16 shows one example from Ivanpah Playa, conducted in 2018.   
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Figure 16: In situ validation of reflectance estimation algorithm. 
(Above) In situ and remote measurements align to within posterior 
error predictions. Adapted from Thompson et al. (2018).  (Right) Field 
validation at Ivanpah Playa, from Thompson et al (2019). 

 

 
AOD estimates show good alignment with spatiotemporally-proximal MODIS retrievals over 
difficult hazy conditions, and with in-situ estimates by handheld sunphotometers (Figure 17). 
 
Figure 17: (Left) MODIS 
AOD550 estimates align 
with remote airborne 
retrievals acquired on the 
same day within a 
latitude/longitude degree. 
(Right) Airborne retrievals 
align with in-situ 
sunphotometry. Both images 
are from Thompson et al. 
(2019c).   

 
For the EMIT mission we performed a separate sensitivity study to determine the degree to which 
aerosol type mismatch during atmospheric correction could impact surface mineralogy estimates.  
Specifically, we examine a mismatch between the template aerosol profiles in the EMIT 
surface/atmosphere retrieval process and the “true” optical properties of aerosols in the atmosphere. 
It is likely that the optical properties in the retrieval and atmosphere never match exactly; templates 
are intended as generic flavors of distortion that the inversion can mix in proportions to achieve good 
quality inversions.  It is reasonable to ask whether an unforeseen optical type, not captured by the 
combinations of palette options, could induce an erroneous residual shape in the surface reflectance.  
Most damaging would be an absorbing aerosol that bears its own minerals inducing some 
hallucinatory mineral-like change in the surface reflectance.  Such situations would not be common 
in practice, though mineral absorption profiles are occasionally visible in dust plumes imaged 
historically by spectrometers under extreme conditions (Chudnovsky et al., 2009).    
 
Our experiment uses an atmosphere based on the iron-oxide-bearing dust mineral profile in the CAM 
earth system model.  This is a strongly absorbing aerosol with shapes distinctly different from the 
profile palette in our inversion.  Notably, the shapes of optical absorptions by atmospheric dust also 
differ significantly from the surface minerals.  They are also somewhat muted in their airborne dust 
form due to embedding within larger particles. As a consequence, we hypothesize that a band depth 
estimate of hematite absorption surface signatures should not be significantly affected by any surface 
reflectance error from this mismatch.  To test this, we simulate a stressing case in which the 
instrument observes a hematite absorption feature, with and without an additional perturbation at 
2% relative band depth.  This level of sensitivity is the detection limit targeted by EMIT.   Our 

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

-0.05

0

0.05

Es
tim

at
e 

- i
n 

si
tu 95%

50%

Ivanpah Reflectance Residual

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

-0.05

0

0.05

Es
tim

at
e 

- i
n 

si
tu 95%

50%

Green Artificial Turf Reflectance Residual

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

-0.05

0

0.05

Es
tim

at
e 

- i
n 

si
tu 95%

50%

Red Artificial Turf Reflectance Residual

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

-0.05

0

0.05

Es
tim

at
e 

- i
n 

si
tu 95%

50%

Lawn Reflectance Residual

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

-0.05

0

0.05

Es
tim

at
e 

- i
n 

si
tu 95%

50%

Parking Lot Reflectance Residual

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength (nm)

-0.05

0

0.05

Es
tim

at
e 

- i
n 

si
tu 95%

50%

Dirt Track Reflectance Residual

Posterior Solution

Initial SolutionRemote retrieval: heuristic initialization

Remote retrieval: converged solution

Wavelength (nm)

R
em

ot
e 

–
in

 s
itu

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
MODIS AOD550 (Regionally proximal, standard deviation)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
V

IR
IS

-N
G

 R
em

ot
e 

A
O

D
55

0 
(s

ta
nd

ar
d 

de
vi

at
io

n)

r = 0.835

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
In situ AOD550 estimate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Re
tri

ev
ed

 A
O

D
55

0

r = 0.826



EMIT Level 2a ATBD 

EMIT L1A Algorithm Theoretical Basis 17 

reference atmosphere presumes typical ISS viewing geometry, but under very hazy conditions.  The 
AOD550 is fixed at our mission-level acceptance threshold 0.4, beyond which a “bad data” flag 
would be triggered. Figure 18 shows the optical properties of the ESM iron oxide aerosol, given as 
spectral absorption and single scattering albedo efficiencies for a total extinction normalized to unity 
at 550 nm.   
 

 

Figure 18: Dust optical properties for 
the iron oxide profiles used in the CAM 
ESM model.  The aerosol absorption 
profile, in blue, contains subtle iron oxide 
absorption features but these atmospheric 
signattures are muted relative to the 
(stark) mineralogical features visible at 
the surface. 

We calculate the continuum-relative surface reflectance absorption from the USGS spectral library 
version 7.0.  We performed forward prediction of TOA radiances via the MODTRAN RTM, added 
relevant instrument noise calculated via Current Best Estimate (CBE) instrument models, and finally 
inverted the result with our standard atmospheric correction algorithm.  For each result, we estimated 
the reflectance of the unperturbed and perturbed case, with the ratio of the two showing the estimated 
relative difference in hematite.  The resulting relative absorptions appear in Figure 19 below.  Note 
that the unexpected distortion of H2O vapor features induces some structured error near those 
windows at 940 and 1140 nm.  However, the overall depth and shape of the critical hematite 
absorption is not significantly affected.  This is also apparent in the resulting band depth estimate 
vis a vis the interpolated continuum, which differs by a small percent of the surface reflectance - 
19.626% vs 19.608% for the undistorted case.  In other words, small perturbations of the 
background, recognized using spectral shapes based on relative radiometry (the EMIT strategy), are 
not significantly distorted.  The relative difference of <0.1% would not endanger the ability to detect 
the addition of hematite to the surface at 2% areal fractional occurrence, and would not affect the 
mineralogy estimates to a level that would endanger mission success. 
 
Figure 19. The result of atmospheric simulation and 
inversion under mismatched aerosol optical types, retrieving 
an iron oxide mineral signature under an iron-oxide-bearing 
aerosol. The unexpected distortion of H2O vapor features 
induces some structured error near those absorptions at 940 
and 1140 nm.  However, the overall depth and shape of the 
critical hematite absorption feature is not significantly 
affected.   
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7. Constraints and limitations 
Two main caveats on the atmospheric correction bear emphasis.  First is the challenge of 
generalizing performance guarantees past the nominal range of observing conditions. The EMIT 
mission uses conservative values to create masks and acquisition plans to exclude poor obsereving 
conditions that would spoil atmospheric correction model assumptions and/or accuracy.  These 
include masking on: 

• Total aerosol optical depth at 550 nm (AOD550) 
• Solar zenith angle  
• Distance to screened clouds.   

These thresholds to control the pixels that appear in the mask and enters the level 3 stage.  They 
were designed conservatively to ensure good data quality downstream.  However, since all spectra 
will be made available at the L2A stage alongside the masks, investigators may choose not to 
apply them and use the “bad” data anyway.  We caution the investigators that  such atmospheric 
and observing regimes are outside the bounds of our modeling and analysis, and our performance 
assessments cannot apply in those cases. 
 
A second  important caveat, noted above, is that the main purpose of the level 2A stage is to 
determine the surface reflectance.  Because the values of Aerosol and water vapor retrievals may 
not be validated against physical standards, we caution against their interpretation as physical 
parameters of the atmosphere.  In particular, it is likely that neither quantity would exactly match 
direct in-situ observations of similar quantities due to differences in the optical absorption path.    
But even along the same path, we intend these parameters as a means to correct atmosphere-like 
distortions in surface reflectance rather than measurement targets in themselves. 
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8. Code repository and references 

8.1 Repository 
The EMIT L2a code is based on the ISOFIT codebase, open source under the Apache 2.0 license 
and available at the following URL: 
 

https://github.com/isofit/isofit 
 
Tutorial materials on the atmospheric correction process and code examples are located at: 
 

https://github.com/davidraythompson/istutor 
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