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1. Key Teammembers 
A large number of individuals contributed to the development of the algorithms, methods, and 
implementation of the L3 approach for EMIT.  The primary contributors are the following: 

• Gregory S. Okin (UCLA) – EMIT Co-I, L3 product lead 
• David R. Thompson (Jet Propulsion Laboratory) – EMIT Co-I, Instrument Scientist 
• Robert O. Green (Jet Propulsion Laboratory) – Mission PI, Radiometric modeling 
• Bethany L. Ehlmann (Caltech) – EMIT Co-I, Mineral composition and abundance 

validation 
• Philip G. Brodrick (Jet Propulsion Laboratory) – Algorithms Design and Implementation 

 

2. Historical Context and Background on the EMIT Mission and its 
Instrumentation 

Mineral dust aerosols originate as soil particles lifted into the atmosphere by wind erosion.  Mineral 
dust created by human activity makes a large contribution to the uncertainty of direct radiative 
forcing (RF) by anthropogenic aerosols (USGCRP and IPCC). Mineral dust is a prominent aerosol 
constituent around the globe. However, we have poor understanding of its direct radiative effect, 
partly due to uncertainties in the dust mineral composition. Dust radiative forcing is highly 
dependent on its mineral-specific absorption properties. The current range of iron oxide abundance 
in dust source models translates into a large range of values, even changing the sign of the forcing 
(-0.15 to 0.21 W/m2) predicted by Earth System Models (ESMs) (Li et al., 2020). The National 
Aeronautics and Space Administration (NASA) recently selected the Earth Mineral Dust Source 
Investigation (EMIT) to close this knowledge gap. EMIT will launch an instrument to the 
International Space Station (ISS) to directly measure and map the soil mineral composition of critical 
dust-forming regions worldwide. 

The EMIT Mission will use imaging spectroscopy across the visible shortwave (VSWIR) range to 
reveal distinctive mineral signatures, enabling rigorous mineral detection, quantification, and 
mapping. The overall investigation aims to achieve two objectives. 

1. Constrain the sign and magnitude of dust-related RF at regional and global scales. EMIT 
achieves this objective by acquiring, validating and delivering updates of surface mineralogy 
used to initialize ESMs. 

2. Predict the increase or decrease of available dust sources under future climate scenarios. 
EMIT achieves this objective by initializing ESM forecast models with the mineralogy of 
soils exposed within at-risk lands bordering arid dust source regions. 

The EMIT instrument is a Dyson imaging spectrometer that will resolve the distinct absorption bands 
of iron oxides, clays, sulfates, carbonates, and other dust-forming minerals with contiguous 
spectroscopic measurements in the visible to short wavelength infrared region of the spectrum. 
EMIT will map mineralogy with a spatial sampling to detect minerals at the one hectare scale and 
coarser, ensuring accurate characterization the mineralogy at the grid scale required by  ESMs. 
EMIT’s fine spatial sampling will resolves the soil exposed within hectare-scale agricultural plots 
and open lands of bordering arid regions, critical to understanding feedbacks caused by mineral dust 
arising from future changes in land use, land cover, precipitation, and regional climate forcing. 
The EMIT Project is part of the Earth Venture-Instrument (EV-I) Program directed by the Program 
Director of the NASA Earth Science Division (ESD). EMIT is comprised of a Visible/Shortwave 
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Infrared Dyson imaging spectrometer adapted for installation on the International Space Station 
(ISS).  
 
Table 1 below describes the different data products to which the EMIT Mission will provide to data 
archives.  This document describes the “Level 3” stage which relies on outputs from the Level 2A 
algorithms (cloud masking, standing water, vegetation cover) and the Level 2B mineral detection 
algorithms to produce aggregated mineral maps that can be ingested into Earth System models to 
evaluate Radiative Forcing (RF) impacts (Level 4). 

 
Table 1. Emit Data Product Hierarchy 

Data Product Description Initial Availability  Median Latency 
Post-delivery 

NASA 
DAAC  

Level 0  Raw collected telemetry  4 months after IOC   2 months  LP DAAC 

Level 1a  Reconstructed, depacketized, 
uncompressed data, time referenced, 
annotated with ancillary information 
reassembled into scenes.  

4 months after IOC  2 months  LP DAAC  

Level 1b  Level 1a data processed to sensor units 
including geolocation and observation 
geometry information  

4 months after IOC  2 months  LP DAAC  

Level 2a  

  

Surface reflectance derived by 
screening clouds and correction for 
atmospheric effects.  

8 months after IOC   2 months  LP DAAC  

Level 2b  Mineralogy derived from fitting 
reflectance spectra, screening for non-
mineralogical components.   

8 months after IOC  2 months  LP DAAC  

Level 3  Gridded map of mineral composition 
aggregated from level 2b with 
uncertainties and quality flags  

11 months after IOC  2 months  LP DAAC  

Level 4  Earth System Model runs to address 
science objectives  

16 months after IOC  2 months  LP DAAC 

 
A high-level, yet complete workflow of the EMIT science data system is shown in Figure 1 for 
context. 
 

 
Figure 1. High-level workflow of the EMIT science data system. 
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3.  Algorithm rationale  
The EMIT L3 approach relies on the strength of the mineral detection algorithms described in 
L2B, which have a long development and verification history (e.g. Clark 2003, Swayze 1997).  In 
the L3 step, these L2B products are adjusted for the sub-pixel vegetation and then aggregated to 
the half degree resolution required for L4 modeling.  The aggregation step uses simple masked 
averaging, and as measurement noise propagated as inputs into L3 is expected to be random, 
uncertainties in this step should only decrease.   
 
The main new algorithmic approach used in the L3 step is the sub-pixel vegetation fraction 
estimations, which are generated here using the Multiple Endmember Spectral Unmixing approach 
(MESMA; Roberts et al. 1998).  Like the mineral identification algorithms used, MESMA also has 
a long history of development and validation.  While linear spectral unmixing based on 
endmembers constructed from image acquisitions precedes MESMA (e.g. Roberts, 1993), the 1998 
advancement described a more repeatable and generalizable approach by generating model 
endmember sets from large, in situ reference library endmember sets.  Endmember selection 
techniques have undergone a series of advancements (Dennison & Roberts, 2003; Dennison et al., 
2004; Schaaf et al., 2011; Roth et al., 2012), and the resulting products from MESMA have been 
field-validated and shown to be effective relative to other methods (Dennison et al., 2019). 
 

4.  Algorithm description  
 
Below we detail the algorithms used to generate EMIT L3 products.  The major processing steps, 
as well as input and output data, are outlined in Figure 1. 
 

4.1 Input data 
The EMIT input and output data products delivered to the DAAC use their formatting conventions, 
the system operates internally on data products stored as binary data cubes with detached human-
readable ASCII header files.  The precise formatting convention adheres to the ENVI standard, 
accessible (Jan 2020) at https://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html.  The 
header files all consist of data fields in equals-sign-separated pairs, and describe the layout of the 
file.  In the file descriptions below, n denotes the number of lines particular to the given acquisition 
and c the number of columns. 
The specific input files needed for the L3 stage are: 

1. Estimated mineral spectral abundance, provided as n x c x 10 BIL interleave data cubes, 
where each band corresponds to the one of the 10 identified EMIT mineral classes.  Each 
channel contains the estimated EMIT-10 mineral spectral abundance, as defined in L2B 
Section 4.2.2. 

2. Estimated mineral spectral abundance uncertainty, provided as n x c x 10 BIL 
interleave data cubes, where each band corresponds to the one of the 10 identified EMIT 
mineral classes.  Each channel contains the estimated EMIT-10 mineral spectral abundance 
uncertainty, as defined in L2B Section 5. 

3. Surface reflectance, provided as n x c x b BIL interleave data cubes, where each of b 
bands corresponds to a different wavelength. 

4. Channelized surface reflectance uncertainty, provided as n x c x b BIL interleave data 
cubes, where each of b bands corresponds to a different wavelength. 

5. Cloud, shade, and water mask, provided as n x c x 1 binary files.  Details on mask bit 
assignments are available in the L2A ATBD. 
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6. Geospatial reference data, provided as raw-space n x c x 3 BIL interleave data cubes.  
The three channels designate the x, y, z ground-coordinates of each pixel. 

 
4.2 Theoretical description 

To introduce the Level 3 aggregation, we first define the Spectral Abundance (SA) for an observed 
reflectance spectrum containing an absorption signature.  The SA aims to estimate the effective 
areal fraction of the spectrum spatial footprint covered by the pure material. To estimate SAi for 
mineral i, we calculate the distance from the deepest point of the mineral absorption to the local 
continuum and normalize it relative to the feature depth for a pure library spectrum of the material, 
and then scale by the proportion of mineral i in the library spectrum.  It is a simple proxy for the 
areal coverage fraction of that mineral within the spectrum spatial footprint, relative to the library 
sample.  Intimate mixtures count as aggregate materials which apportion their area to their 
constituent minerals.  For a complete description of this process, we refer the reader to the L2B 
Algorithm Theoretical Basis Document (ATBD).  These values are provided as inputs into the 
Level 3 aggregation.  The L3 aggregation step uses the 60 m ground-level resolution SA output 
from L2B, in conjunction with various masks and adjustments for vegetation, in order to estimate 
the Aggregated Spectral Abundance (ASA) of each EMIT mineral for each ESM grid square. This 
L3 ASA product is defined as the expected normalized band depth that one would find upon 
measuring the surface reflectance at a random bare (not vegetated or within water) location within 
the grid square.  Here we use “expectation” formally in its statistical sense to mean a numerical 
average. 
Aggregation from the native-sensor resolution SA estimates to 0.5° x 0.5° model grid cells requires 
four basic steps: 1) the correction of mineral SA estimations to account for partial vegetation cover, 
2) the conversion of raw-space input data products to map-space co-registered products, using 
provided geospatial information, 3) the aggregation of vegetation-corrected mineral SA to 0.5° x 
0.5° model grid cell estimates, and 4) the propagation of uncertainty. 
 
4.2.1 Bare Earth Percentage Adjustment 

The goal of the L3 aggregation is to provide the Aggregated Spectral Abundance of the given mineral 
over only bare-ground regions of the half degree model grid cells.  Consequently, prior to 
aggregation all areas that are not bare-ground need to be removed.  This is done by first masking out 
areas where the bare-ground coverage fb, does not exceed a particular threshold fb,th, caused by 
vegetation, shade, water, or anthropogenic sources obscuring the bare-ground.  We select a fb,th value 
of 0.5 based on published evaluations (Okin et al., 2001).  In areas where 1 > fb > fb,th, the SA of 60 
m ground-level resolution L2B outputs must also be adjusted so that they are only representative of 
the bare-ground component of the surface.  This adjustment is proportional to the inverse of bare 
ground coverage, giving 

𝑆𝐴!" =
	𝑆𝐴!
𝑓#

(1) 

where 𝑆𝐴!" is the corrected spectral abundance. 

To estimate fractional cover, we use the Multiple Endmember Spectral Unmixing approach 
(MESMA; Roberts et al. 1998, Dennison et al., 2019).   MESMA is a spectral mixture analysis 
method that uses a linear combination of endmembers to estimate surface reflectance.  Both the 
number and type of endmembers are allowed to vary throughout the image.  Endmember selection 
is a critical for generalized applications of MESMA, and here we use endmembers derived from 
aggregations of a diverse set of field spectra, following Dennison et al. (2019).  
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4.2.2 Orthorectification and mosaicing 
To aggregate into 0.5° x 0.5° model grid cells, all data (𝑁𝐵𝐷!"and associated masks) must be 
transformed from raw to map space.  Since pixel-specific georeferencing has already occurred, 
here we simply need to use the reference pixel coordinates as a look up table to convert all 
products to map space.  This is done, however, on a line-by-line basis, and many acquisitions will 
overlap.  Consequently, acquisitions will be mosaiced after masking (including input cloud, shade, 
and water masks as well as derived vegetation masks (Section 4.2.1)), by selecting for pixels with 
the minimum summed mineral measurement uncertainty.   
 
4.2.3 Aggregation 
Half-degree spatial aggregates of the corrected spectral abundances are not intended to account for 
the variable vegetation, quartz, and feldspar distributions within a grid cell, given that these will 
enter into L4 models from other sources (e.g., Scanza et al., 2015).  This aggregated product, which 
we term the Aggregated Spectral Abundance (ASA) and is calculated for each of the EMIT 10 
minerals (i), can be calculated as the simple average of relevant pixels within the grid, giving: 

𝐴𝑆𝐴! =	
∑ (1 − 𝑚$)𝑆𝐴!,$"&
$'(

∑ (1 −𝑚$)&
$'(

(2) 

where j is an index over the two spatial dimensions within the given grid cell and mj is a binary 
indication of whether each individual pixel is masked (either from an input mask or because fb < 
fb,th). 

The corresponding variability in 𝐴𝑆𝐴! will be characterized as 

𝜎! = 1
∑ (1 −𝑚$)2𝑆𝐴!,$" − 	𝐴𝑆𝐴!3

)&
$'(

−1 +	∑ (1 − 𝑚$)&
$'(

(3) 

where 𝜎! 	is the standard deviation of the estimates of 𝐴𝑆𝐴!" in each grid cell. 

 
4.3 Practical Considerations 

The various adjustment and aggregation code described above is implemented in Python 3.7, and 
can operate independently on different scenes.  All computation is faster than the L1B, L2A, and 
L2B stages of analysis, limited mainly by the input / output throughput.  Operations can be 
executed out-of-core to remove any memory limitations for long lines.  Dependencies are all 
provided as input, making this code base easily operable and stand-alone.   
 

4.4 Output Data 
Level 3 output data include both delivered products, which are necessary for mission success, as 
well as auxiliary products, which are generated in the process of producing the delivered products, 
and preserved for transparency and issue tracking.  
 
4.4.1 Delivered Products 

1. Mineral aggregated spectral abundance, provided as a 10 band global image in GeoTiff 
format, EPSG:4326 at 0.5 x 0.5 degree resolution. Each channel contains the Aggregated 
Spectral Abundance (see section 4.2) of each EMIT mineral. 

2. Mineral aggregated spectral abundance uncertainty, provided as a 10 band global 
image in GeoTiff format, in EPSG:4326 at 0.5 x 0.5 degree resolution.  Each channel 
contains the EMIT mineral aggregated spectral abundance measurement uncertainty as 
defined in section 5.  
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4.4.2 Auxiliary Products 

1. Fractional cover, provided as an n x c x 3 BIL interleave data cube, with c columns and n 
lines.  Each channel contains the fractional cover as calculated by MESMA (see section 
4.2.1). 

2. Fractional cover uncertainty, provided as an n x c x 3 BIL interleave data cube, with c 
columns and n lines.  Each channel contains the estimated uncertainty of the fraction cover, 
as defined in section 5.  

5. Calibration, uncertainty characterization and propagation, and validation 
Uncertainty characterization of the aggregated L3 product comes through a combination of 
uncertainty estimates from the L2B outputs and MESMA products, and is ultimately provided as a 
spectral abundance uncertainty for each EMIT mineral.  To estimate the uncertainty of the MESMA 
results, we run 100 Monte Carlo experiments, randomly perturbing each reflectance spectrum by its 
estimated uncertainty.  These results are used to estimate the standard deviation of fb, or sb.  
Neglecting the uncertainty of the binary masking, and treating all uncertainty instances as random 
and independent, we can reduce relative ASA uncertainty (Ψ*+*! ) to: 

Ψ*+*! =	78
𝐴𝑆𝐴!

∑ 21 −𝑚$3,
$'(

9
)

	:;21 −𝑚$3 <=
Ψ+*!
!

𝑆𝐴!,$
>
)

+ =
𝜎#
$

𝑓#
$>

)

?
&

$'(

@ (4) 

 

where Ψ+*!
!  is the spectral abundance uncertainty for spatial index j and EMIT mineral i, as calculated 

in L2B.  Notably, due to the random and independence assumptions, uncertainty decreases as a 
square root of the number of unmasked, observed pixels within the half degree grid cell.  Following 
the 50% grid cell coverage requirement, this corresponds to a scaling factor of less than 4e-5 at the 
equator.  

While the independence and randomness assumptions are reasonable for the origins of the 
propagated uncertainty values (which stem from L2A), there are several other potential sources of 
uncertainty that are not considered here.  These include: 

• Misidentification inside of the L2B spectral library.  If the mineral identification process 
in L2B mistakes a surface property for another mineral, this error would not be captured in 
the L2B outputs, and consequently is unaccounted for in the L3 output.  This type of error is 
likely to have some form of spatial order, given the general spatial autocorrelation of land 
features, and consequently would likely not diminish by the ~4e-5 factor shown above.  
However, there is no way of estimating this type of error without more complete surface 
knowledge, which is itself an objective of this mission. 

• Uncertainty from unmeasured areas. Areas not observed by EMIT, or that were covered 
by cloud, shadow, or particularly high aerosol levels (at the time of observation) will not be 
included in the ASA calculations above.  Consequently, up to 50% of the surface minerology 
could be unaccounted for. Due to the expected spatial autocorrelation of surface mineral 
composition, it is nevertheless likely that mapped areas within each half degree pixel are 
reasonable estimates of the ASA.  This is particularly true at the global scale, where it is 
unlikely that unmeasured areas are systematically correlated with a specific mineral type. 
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6. Constraints and Limitations 
 
No constraints or limitations are imposed on the L3 grid.  All delivered data will have undergone 
quality control and should be considered valid calibrations up to the reported uncertainties in input 
parameters.  Unanticipated data corruption due to factors outside the modeling, if discovered, will 
be reported in peer reviewed literature and/or addenda to this ATBD. 
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